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Measurement of Physical Quantities.  
Observational Errors. 

 

I. Physical Quantities. 
1. Physical quantity – represents the quantified measure of a physical 

property of a body or phenomenon.  
2. Designation of Physical Quantities: 
- Symbol – just a matter of convention – one and the same physical 

quantity may be designated by different symbols, but usually for convenience a 

common designation is accepted. Actually, symbols for quantities should be 

chosen according to the international recommendations from ISO 80000, the 

IUPAP red book and the IUPAC green book. For example, the recommended 

symbol for the physical quantity 'mass' is m; 

- Numerical value; 

- Measuring unit (dimension). 
Example: length L=1m, L=100cm, L=1000mm. 

 

II. Ways to measure physical quantities. 

1. Direct measurement – the physical quantity value is read directly 

from the display of the device.  
Examples: temperature is measured by thermometer, time by clock, 

electrical current by ammeter, etc. 
2. Indirect measurement – the value of the measured physical 

quantity is determined by means of a formula or relation among it and other, 

experimentally measured, physical quantities.  

Example: density of a rigid body, 
V

m
=ρ , where the mass m is 

measured by scales and the volume, V – determined from the geometry of the 

body. 

III. Measuring units in SI (System International). 
1. Base quantities and units: 
length – m (Meter) 

mass – kg (Kilogram) 

time – s (Second) 

temperature – K (Kelvin) 

electric current – A (Ampere) 

amount of substance – mol (Mol) 

luminous intensity – cd (Candela) 

2. Subsidiary quantities and units: 
plane angle – rad (radian) 

solid angle– sr (steradian) 



3. Derived quantities and units – all other quantities are derived 

quantities since their dimensions are derived from those of base quantities by 

multiplication and division. For example, the physical quantity velocity is 

derived from base quantities length and time and has dimension L/T: 
t

s
v =  ⇒ 

[m.s
-1

]. Another example is the unit of force, which has its own name, Newton:

  maF =  ⇒ [kg.m.s
-2

]≡[N] 

 Some derived physical quantities have dimension 1 and are said to be 

dimensionless quantities.  

4. Prefixes used for the designations of multiples and fractions of the 
measuring units. 
The International System of Units (SI) specifies a set of unit prefixes known as 

SI prefixes or metric prefixes. An SI prefix is a name that precedes a basic 

unit of measure to indicate a decadic multiple or fraction of the unit. Each 

prefix has a unique symbol that is prepended to the unit symbol. The SI prefixes 

are standardized by the International Bureau of Weights and Measures in 

resolutions dating from 1960 to 1991. 

 

Prefix Symbol 1000m 10n Decimal Short scale Long scale 
yotta Y 1000

8
 10

24
 1000000000000000000000000 Septillion Quadrillion 

zetta Z 1000
7
 10

21
 1000000000000000000000 Sextillion Trilliard 

Exa E 1000
6
 10

18
 1000000000000000000 Quintillion Trillion 

peta P 1000
5
 10

15
 1000000000000000 Quadrillion Billiard 

Tera T 1000
4
 10

12
 1000000000000 Trillion Billion 

giga G 1000
3
 10

9
 1000000000 Billion Milliard 

mega M 1000
2
 10

6
 1000000 Million 

Kilo k 1000
1
 10

3
 1000 Thousand 

hecto h 1000
2/3

 10
2
 100 Hundred 

deca da 1000
1/3

 10
1
 10 Ten 

 1000
0
 10

0
 1 One 

deci d 1000
−1/3

 10
−1

 0.1 Tenth 

centi c 1000
−2/3

 10
−2

 0.01 Hundredth 

milli m 1000
−1

 10
−3

 0.001 Thousandth 

micro µ 1000
−2

 10
−6

 0.000001 Millionth 

nano n 1000
−3

 10
−9

 0.000000001 Billionth Milliardth 

pico p 1000
−4

 10
−12

 0.000000000001 Trillionth Billionth 

femto f 1000
−5

 10
−15

 0.000000000000001 Quadrillionth Billiardth 

Atto a 1000
−6

 10
−18

 0.000000000000000001 Quintillionth Trillionth 

zepto z 1000
−7

 10
−21

 0.000000000000000000001 Sextillionth Trilliardth 

yocto y 1000
−8

 10
−24

 0.000000000000000000000001 Septillionth Quadrillionth 



Example: S=5km=5.10
3
m 

      d=6nm=6.10
-9

m 

 
5. Dimensionless quantities – obtained as a result of the division of two 

quantities with the same dimension. 

 

ІV. Errors occurring during the measurement of physical 
quantities.  

 

Experience has shown that no measurement, no matter how carefully 

made, can be completely free of uncertainties. There is always an uncertainty 

associated with any measured quantity even in the most carefully done 

experiment and despite using the most sophisticated 

instruments. This uncertainty in the measured value is known as the error in that 

particular measured quantity. In presenting experimental results it is very 

important to objectively estimate the error in the measured result. Such an 

exercise is very basic to experimental science. 

 In science, the word error does not carry the usual connotations of the term 

mistake. As such, errors are not mistakes; you cannot eliminate them by being 

very careful. The best we can hope to do is to ensure that errors are as small as 

reasonably possible and to have a reliable estimate of how large they are. 

When a measurement of a physical quantity is repeated, the results of the 

various measurements will, in general, spread over a range of values. This 

spread in the measured results is due to the errors in the experiment. Error of 

the measured quantity x, denoted usually by ∆x, is the difference between the 

true and the measured value x:  

true
x x x∆ = −  

Accuracy is the closeness of agreement between a measured value and the true 

value. Precision refers to the repeatability of measurement. It does not require 

us to know the correct or true value and shows how tightly repeated 

measurements cluster around their average value. Uncertainty of a measured 

value is an interval around that value such that any repetition of the 

measurement will produce a new result that lies within this interval. Bias is the 

difference between the average value of the large series of measurements and 

the accepted true. Blunders are actual mistakes, such as reading an instrument 

pointer on the wrong scale. 

Thus, the result of any physical measurement has three essential components:  

• a numerical value  giving the best estimate possible of the quantity 

measured,  

• the degree of uncertainty associated with this estimated value and 

• the unit of the measured quantity. 

 



V. Type of errors 
 

Errors are generally classified into three 

types: 

• blunders (coarse errors),  

• systematic (or determinate) errors 

and  

• random (or indeterminate) errors. 

 A coarse error (blunder) is observed 

when the measured value is much larger or 

smaller than the true value of the physical 

quantity. Blunders are result from carelessness, 

lack of knowledge or concentration during the                Figure 1  

laboratory work and the only way to eliminate them 

is to repeat the measurement. Systematic error is an error, which is constant 

throughout the experiment. Systematic errors lead to clustering of the measured 

values around a value displaced from the "true" value of the quantity. Blunders 

and systematic errors are actually mistakes which can be eliminated if the 

experiment methodology is appropriately chosen and the measuring procedure 

is carefully done.  

Random errors on the other hand, can be positive or negative and lead to 

a dispersion of the measurements around a mean value. For example, in a time 

period measurement, errors in starting and stopping the clock will lead to 

random errors, while a defect of the watch causes a systematic error. 

The random uncertainties can be treated statistically in order to obtain an 

unbiased estimation of the true value, the systematic uncertainties cannot. It is 

seen in the figure the measured six quantities 1 2 3 4 5 6, , , , ,x x x x x x (open circles in 

the figure) are uniformly grouped from both sides of the true value x (full circle 

in the figure), and in the case of random errors the mean value x  is close to the 

true one, and we can even estimate how close they are. This is not possible in 

the case of systematic errors as it seen from the figure, where x  and x  are far 

apart. 

 The error x∆ is called absolute error. It is measured in the same units as 

the measured quantity x. The ratio 
x

x∆
is dimensionless and is called relative 

error. It is small quantity usually, that is why it is presented in percents: 

%100•
∆

x

x
. 

 

 

 



VІ. Methods of data processing. 
 
1. Direct measurements. 

Any measurement when we measure by a proper device some quantity is called 

direct measurement. 

1.1. Single measurement. 
The measuring instruments are never able to help us obtain absolutely exact 

measurements of any quantity, no matter how carefully made or how 

sophisticated the instruments may be. Every measuring instrument has a limit to 

its precision. For instance, smallest divisions of the meter stick are millimeters. 

As an absolute error for any measuring device its smallest division is taken. 

1.2. Multiple measurements. 
Many experiments involve a series of repeated measurements of a quantity. Let 

we have measured the quantity x and suppose the errors are random only. We 

collect our data in a table: 

ix  ix∆  2
ix∆  

x1 1xx −  ( )2
1xx −  

x2 2xx −  ( )2
2xx −  

… ... … 

xn nxx −  ( )2
nxx −  

 

1.)  The best estimate for x is usually its average or mean value.  

∑
=

=
n

1i

ix
n

1
x . 

2.) The second column in the table is the deviation or residual of each 

measurement: 

ii xxx −=∆ . 

If the deviations are all very small, the measured values are all close to each 

other and presumably very precise. If some of the deviations are large, the 

measurements are obviously not so precise. 

Some of these differences are negative, other are positive. If the errors are 

randomly distributed the number of the positive must be approximately the 

same as the number of positive differences. 

3.) In the third column of the table we put square of the errors from the 

second column: 
2

i
2

i
2 )xx(x −=∆=σ . 

 

 



4.) The standard deviation or standard error of the mean is: 

( )
2

1

( 1)

n

i

i

x x

x
n n

=

−

∆ =
−

∑
 

For convenience, the uncertainty x∆=σ  is always defined to be positive, so 

that x x+ ∆  is always the highest probable value of the measured quantity and 

x x− ∆  the lowest. Unfortunately, in most scientific measurements we can not 

be absolutely sure where the measured quantity lies. Choosing this value for 

x∆=σ  we are sure that the actual quantity lies within the range x x± ∆  with an 

approximately 68% probability. Usually, for the visualization of the measured 

data in case of predominantly random errors occurring, the graph of the 

distribution of the estimated values of the quantity x is given.  

 
Figure 2. Gauss distribution function 

 

If the measurement results are uniformly distributed around the mean 

value ∑
=

==
n

1i

ix
n

1
xa , then the distribution is named normal or Gauss 

distribution. F(x) is termed the distribution function and in case of Gauss 

distribution represents a bell curve which is mathematically described by the 

formula: 

( )
2

2

2

xx

e
2

1
)x(f σ

−
−

πσ
=  

f(x) – distribution function; 

σσσσ

xa + σσσσa - σσσσ a0

f(
x)



σ  - standard deviation, which is the half-width of the bell curve at the 

inflexion point; 

x  - mean value of the measured quantity x. 

It is seen that increasing of the number of the measurements will 

decrease the error of the mean.  In such a manner we can decrease the random 

error, but we can not influence the device error. If however only a few 

measurements are performed then the statistically estimated standard deviation 

is not representative for the accuracy of the end result. Here the normal 

distribution of the measurement results for the values of the quantity x should 

be substituted by another statistical distribution – the Student distribution, as 

shown in the following figure: 

 

 
Figure 3. Gauss (normal) and Student distributions 

 

In such cases of smaller number of measurements, a correction of the calculated 

standard deviation σ  is needed by means of the Student coefficient, st which is 

a coefficient dependent on n, the number of measurements done and the 

probability α, as seen in the table below. α is equal to the probability the true 

value of x to belong to the interval )kx,kx( σ+σ− , where k = 1, 2, … 

 
n α 0.5 0.6 0.7 0.8 0.9 0.95 0.99 0.999 
2 1.00 1.38 2.00 3.10 6.30 12.70 63.70 636.30 

3 0.82 1.06 1.30 1.90 2.90 4.30 9.90 31.60 

4 0.77 0.98 1.30 1.60 2.40 3.20 5.80 12.90 

5 0.74 0.94 1.20 1.50 2.10 2.80 4.60 8.60 

6 0.72 0.90 1.10 1.40 1.90 2.40 3.70 6.00 

10 0.70 0.88 1.10 1.40 1.80 2.30 3.30 4.80 

15 0.69 0.87 1.10 1.30 1.80 2.10 3.00 4.10 

20 0.69 0.86 1.10 1,30 1.70 2.10 2.90 3.90 

∞ 0.67 0.84 1.00 1.30 1.60 2.00 2.60 3.30 

 

Thus, the observational error becomes: 

σ=∆ tcorrected sx  



2. Indirect measurements. 
Frequently, the result of an experiment can not be measured directly. 

They can be calculated from several measured physical quantities (each of 

which has a mean value and an error). What is the resulting error in the final 

result of such an experiment? 

If various quantities 1 2,
n

x x xK  are measured with small uncertainties 

1 2,
n

x x x∆ ∆ ∆K and the obtained values are used to calculate some quantity y, 

which depends on them - 1 2( , )
n

y x x xK  - then the uncertainties in 
i

x  cause an 

uncertainty in y. We can expand 1 1 2 2( , )
n n

y x x x x x x+ ∆ + ∆ + ∆K  in series: 

1 1 2 2 1 2

1

( , ) ( , )
n

n n n i

i i

y
y x x x x x x y x x x x

x=

∂
+ ∆ + ∆ + ∆ = + ∆

∂
∑K K  

and neglect the terms of second and higher order. The error of y in this 

approximation is: 

1

n

i

i i

y
y x

x=

∂
∆ = ∆

∂
∑  

We get here the absolute value, because some derivatives can be negative, the 

uncertainties
i

x∆  are positive (by definition, but the errors are not) and the 

maximum error y∆ is achieved in this way. The formula above is termed 

‘propagation of errors’. 

If you forget the above formula, a simple method exists, allowing to find the 

relative error 
y

y

∆
 by following the next steps:  

1. Calculate the natural logarithm from 1 2( , )
n

y x x xK . 

2. Take the full differential of the expression obtained. 

3. Take an absolute value of each derivative. 

4. Replace the differentials 1 2,
n

dx dx dxK  by the uncertainties 

1 2,
n

x x x∆ ∆ ∆K  

The formula 1 2( , )
n

y x x xK usually is suitable to take a logarithm, because it has 

a structure of products of powers of the variables. If some relative error is small 

(one or two orders smaller than the other errors) it can be neglected in the final 

result.  

 
3. Rules to present the final result. 

The number of reliably known digits in a number is called the number of 

significant figures. The quantity x∆  is an estimate of an uncertainty and 



obviously it should not be stated with too much precision, the same is true for 

the mean value. 

 

1.) If the result is very small or very big number, it is presented in 

scientific notation: 
5263542.17 2.6354217 10x = = ⋅ . 

2.) It is enough to keep only three digits after the decimal point: 
52.635 10x = ⋅ . 

3.) The absolute error must be presented in the same notation as 

measured quantity: 
54256.17 0.0425617 10x∆ = = ⋅ . 

4.) The absolute error must be rounded to the first significant figure: 
54256.17 0.04 10x∆ = = ⋅ . 

5.) In the final result all significant figures except the last one are 

correct: 
52.64 10x = ⋅ . 

6.)  The final result must be written in the form: 

( ) 52.64 0.04 10x = ± ⋅ . 

 
4. Rules for reporting uncertainties. 
1. The result is presented in the form ( )x x± ∆  [units], for example: 

X = (7.35±0.02) cm 

Note the use of parentheses to apply the unit to both parts. 
2. Commonly, only the significant figures are reported, without an 

explicit uncertainty. This implies that the uncertainty is 1 in the last 

decimal place. 

For example reporting the result x = 7.35 cm implies uncertainty 

0.01 cm. Note that writing 7.352786 cm, when the uncertainty is 

actually 0.01 cm, is wrong. 

3. A special case arises when we have a situation like 1500±100. 

Scientific notation allows use of a simplified form, reporting the 

result as 1.5×10
3
. In the case of a much smaller uncertainty, 1500±1, 

we report the result as 1.500×10
3
, showing that the zeros on the right 

are meaningful. 

 

VІІ. Graphical representation of data. 
 

In experimental physics, the graph of the experimental data is most 

important in improving the understanding of the experimental results. Moreover 

from the graphs one can calculate unknown quantities related to the 

experiments and to compare the experimental data with the theoretical curve 



when they are presented on same graph. There is a specific sequence of steps to 

follow in preparing a graph.  

 

Arrange the data to be plotted in a table. 

1. Decide which quantity is to be plotted on the x-axis (the abscissa), 

usually the independent variable, and which on the y-axis (the 

ordinate), usually the dependent variable. 

2. Use a Cartesian coordinate system. 

3. Decide whether or not the origin is to appear on the graph. Some 

uses of graphs require the origin to appear, even though it is not 

actually part of the data, for example, if an intercept is to be 

determined. 

4. Choose a scale for each axis, that is, how many units on each axis 

represent a convenient number of the units of the variable 

represented on that axis. (Example: 5 divisions = 25 cm) Scales 

should be chosen so that the data span almost all of the graph paper, 

and also make it easy to locate arbitrary quantities on the graph. 

(Example: 5 divisions = 23 cm is a poor choice.) Label the major 

divisions on each axis. 

5. Write a label in the margin next to each axis which indicates the 

quantity being represented and its units. Write a label in the margin 

at the top of the graph that indicates the nature of the graph, and the 

date the data were collected. (Example: ”Resistance of a copper 

wire”) 

6. Plot each point. The recommended style is a full circle. A cross or 

triangle may also be used. 

7. Draw a smooth curve that comes reasonably close to all of the 

points. Whenever possible we plot the data or simple functions of 

the data so that a straight line is expected. Do not simply connect the 

dots. 

8. If the slope of the line is to be determined, choose two points on the 

line whose values are easily read and that span almost the full width 

of the graph. These points should not be original data points. 

Remember that the slope has units that are the ratio of the units on 

the two axes. 

 

VІІI. Least Squares Fitting (Linear Regression). 
 
One of the most common and interesting types of experiment involves 

the measurement of several values of two (or more) different physical variables 

to investigate the mathematical relationship between them. In many cases the 

experiments of this type are those for which the expected relation is linear. We 



consider the two physical variables x and y are connected by a linear relation of 

the form: 

y a bx= +  

The graph of y against x should be a straight line that has slope b and 

intersects the y axis at y =a. If we measure n different values 1 2, ...
n

x x x and the 

corresponding values 1 2, ...
n

y y y  and if our measurements were subject to no 

uncertainties, then each of the points ( , )
i i

x y  would lie exactly on the 

line y a bx= + . 

We suppose that, the measurements of y have uncertainties 

1 2, ...
n

y y y∆ ∆ ∆  and the uncertainty in our measurements of x is negligible. This 

assumption is often reasonable, because the uncertainties in one variable often 

are much larger than that for the other. In Figure 4 they are shown as error bars 

at both sides of
i

y . We should draw a line through them, as close to the points, 

as possible. The correspondent procedure is called fitting.  

If the parameters a and b are chosen to minimize the sum: 

2

1

n
i i

i i

y a bx
S

y=

 − −
=  

∆ 
∑  

The fit is called least squares method. The division to
i

y∆ makes the sum 

dimensionless and serve as a proper weight - the measurement with a high error 

contributes less then those with a small error.   

 

 

If the parameters a and b are chosen 

to minimize the sum :  
2

1

n
i i

i i

y a bx
S

y=

 − −
=  

∆ 
∑  

The fit is called least squares 

method. 

The sum is a function of two 

parameters – it’s minimum is defined 

by : 

2
1

0
n

i i

i i

y a bxS

a y=

 − −∂
= − = 

∂ ∆ 
∑ ,  

2
1

0
n

i i
i

i i

y a bxS
x

b y=

 − −∂
= − = 

∂ ∆ 
∑  

 

  
Figure 4. Two measured quantities 

related by a linear dependence. 

x 

y 

x1 x2 x3 xn 

yn 

y3 

y2 

y1 



The solution of the two linear equation with two unknowns 

 

1 x y
S a S b S+ = , 2x xy

S a S b S+ =  

is 

2

2

1 2

y x xy

x

S S S S
a

S S S

−
=

−
, 

1

2

1 2

xy x y

x

S S S S
b

S S S

−
=

−
, 

where S1, Sx, Sy, S2 и Sxy are : 

1 2
1

1n

i i

S
y=

 
=  

∆ 
∑ , 

2
1

n
i

x

i i

x
S

y=

 
=  

∆ 
∑ , 

2
1

n
i

y

i i

y
S

y=

 
=  

∆ 
∑ , 

2

2 2
1

n
i

i i

x
S

y=

 
=  

∆ 
∑ , 

2
1

n
i i

xy

i i

x y
S

y=

 
=  

∆ 
∑  

     

and the errors of a and b are: 

2

2

1 2 x

S
a

S S S
∆ =

−
, 1

2

1 2 x

S
b

S S S
∆ =

−
 

In the case when all errors of y are equal i.e.
i

y y∆ = ∆ , the sums are simplified: 

1S n= ,  
1

n

x i

i

S x
=

=∑ ,  
1

n

y i

i

S y
=

=∑ ,  2

2

1

n

i

i

S x
=

=∑ ,  
1

n

xy i i

i

S x y
=

=∑ , 

and the errors are : 

2

2

2 /
x

Sy
a

S S nn

∆
∆ =

−
, 

2

2 /
x

y
b

S S n

∆
∆ =

−
 

It is seen the errors can be decreased, reasonably increasing the number 

of measurements. 

The least squares procedure is implemented nowadays in each graphical 

program and can be performed just by calling the corresponding procedure after 

the experimental points are plotted on the graph. 

 

 

ELASTIC DEFORMATIONS. YOUNG’S MODULUS  
OF A STEEL WIRE 

 

THEORETICAL SECTION 
The internal molecular forces that tend to resist changes in shape or vo-

lume of the condensed matter are collectively called stress. Stress can be 

expressed as the ratio of the applied external force to the area over which the 

force acts: 

Area

Force
Stress =  



The simplest type of deformation is the linear extension or shortening. In 
that case, Hooke’s law is fulfilled: 

L

L
E

S

F δ
= , 

the quantity E is called Young modulus (modulus of linear deformation). 
Within the elastic limit, Hooke's law tells us that a force distorts a body 

by some amount proportional to the force doing the stretching. Recalling the 
molecular structure of a solid, one can imagine that greater and greater forces 
are trying to pull the molecules of the solid farther and farther apart (the 
stretch), which cause greater and greater forces between the molecules trying to 
pull everything back together again. When a weight on a wire is in equilibrium 
the downward force exerted by a weight is matched by an upward force exerted 
by internal forces among the molecules of the string. The Hooke’s law is a 
result of the stable equilibrium of the molecules of the solid. The interaction 
force between two particles, if the distance between them is changed by x, is: 

kx
x

W
F

p
−=

∂

∂
−= , 

i.e. the force is proportional to the displacement x, and the sign “–“ designates 
that the force is always directed to the 
equilibrium position.  

The stress always results in 
some amount of compression, pulling 
or twisting of matter. These changes 
are collectively called strain. Strain is 
the deformation caused by stress. For 
solids under tension or compression 
stress, the resulting strain can be 
expressed as a ration of the resulting 
change of length to the original, 
unstressed length: 

L
Strain

L

∆
=                                     Figure 5         

The strain in a solid under the influence of external forces leads to 
change of the shape and dimensions of the solid, i.e to deformation of the solid. 
Different types of deformations of solids exist. These may be classified as 
follows: 

1. elastic deformations – if the deformation disappear after the external 
force is removed. The largest stress for which this occurs is called elastic limit. 

2. inelastic deformations – the deformation or part of it is retained after 
removing the external force and lead to irreversible changes in the crystalline 



lattice of the solid. When the strain does not return to zero after the stress is 
removed, the material is said to behave plastically. 

EXPERIMENTAL SECTION 
І. Estimation of Young’s modulus of a steel wire using a dumpy level. 

1. The wire is stretched by applying one of the weights. The metal plate 

of the level tube is brought into horizontal position by a micrometric screw. 

2. One of the available weights of mass m is put on the holder and its 

mass value is written down in the table. The air bubble of the level goes up due 

to the wire elongation. The micrometric screw is used to restore the horizontal 

position of the level when the air bubble is in the middle of the level window. 

The number n of the ticks, needed to turn the screw is also written down in the 

table.  
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Taking into account, that the deforming force in case of a mass m is the weight 

G=mg (g is the gravitational acceleration), the Young’s modulus can be 

estimated from: 

GL
E

S Lδ
= . 

3. The extension of the wire for a given weight is calculated, having in 

mind that the force of gravity for a weight with mass m is G=mg, according to 

δL=an, where a is the micrometer constant (written on the wall next to the 

experimental setup). 

4. All weights are applied one by one to the holder and for each weight 

the elongation is calculated. 

5. The weights are taken away one by one from the holder and the 

corresponding decrease of the mass is written into the table. The shortening of 



the wire is determined in the same way as its elongation but rotating the 

micrometer screw in the reverse direction. All data is written in the table. 

6. The elastic constant of the wire is determined by 
L

G
k

δ
=  and also 

written down in the table. 

7. The average elastic constant k  of the wire is calculated and the 

standard deviation k∆  is estimated. 

)1n(n

k

k

n

1i

2
i

−

∆

±=∆
∑
= , n=8 

=∆k  
 

8. The end result is given by: 

kkk ∆±=  
 

9. Young’s modulus is calculated by the formula: 

=
π

== k
d

L4
k

S

L
E

2
 

=E  
where L – initial wire length, and ∆L – absolute error with which L is measured 

(also to be found on the wall next to the experimental set-up); 

=L  

S – surface of the wire cross-section (
4

d
S

2π
= ) ; 

d – diameter of the wire, ∆d – absolute error of the diameter (to be seen on the 

list at the wall around). 

=d  

 

S =  

 

10. The relative error with which is estimated the Young’s modulus cab 

be determined from: 



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
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11. The absolute error for the Young’s modulus is given by: 

E.E ε=∆  

 

=∆E  
 

12. The end result is: 

EEE ∆±=  
 

 

 

ІІ. Schematic view of the experimental set-up. 

A – steel wire 

B – steel holder 

G – weights 

L – metal plane with the dumpy level 

M – micrometer screw 

S – scale             Figure 6. Experimental set-up 

 

 
MEASUREMENT OF THE FLUID VISCOSITY  

USING STOKES’ LAW 
 

THEORETICAL SECTION 
Fluid could be determined as a substance that deforms continuously 

when subjected to a shear stress. The property viscosity of a fluid relates the 

shear stress in a fluid to the angular rate of deformation. Fluid Mechanics 

studies the fluid properties.  

There are two main types of fluid flow. If the flow is smooth, such that 

neighbouring layers of the fluid slide by each other smoothly, the flow is said to 

be streamline or laminar flow.  In streamline flow, each particle of the fluid 

follows a smooth path, called a streamline, and these paths do not cross one 

another. Above a certain speed, the flow becomes turbulent. Turbulent flow is 

characterized by small, whirlpool-like circles called eddy currents or eddies. 

The relative motion of the layers in a real fluid is accompanied by the 

certain amount of internal friction, called viscosity. The frictional force in the 

case of laminar flow is given by the Newton’s law:  

z

v
SF

∆

∆
η= , 



where η is the internal friction factor for the fluid (dynamic viscosity) and 

depends on the type of the fluid and on temperature; S – area of the layer, at 

which the force F is applied; 
z
v

∆∆∆∆

∆∆∆∆
 – gradient of velocity (velocity change ∆v at 

a distance ∆z perpendicular to the motion direction of the fluid layers); 

On a spherical body falling free in a fluid, three forces are exerted 

simultaneously: 

1. Force of gravity (weight): 

G=mg=ρVg,    where 

m – mass of the body ( Vm ρ= ); 

ρ – density of the body; 

V – body volume (
3r

3

4
V π= ); 

r – radius of the sphere; 

g – the gravitational constant. 

2. Buoyancy, which equals the weight of the 

fluid dispaced by the falling body (Archimedes law): 

G1=m1g=ρ1Vg,   where                                       Figure 7 

m1 –mass of the displaced by the falling body fluid ( Vm 11 ρ= ); 

ρ1 – fluid density; 

V – volume of the displaced by the body liquid, which equals the 

volume of the body. 

3. Viscosity force, given by the Stokes' law for the friction force exerted 

on a spherical body: 

F=6πηrv ,  where 

F - is the drag force of the fluid on a sphere,  

η is the fluid viscosity,  

v is the velocity of the sphere relative to the fluid, and  

r is the radius of the sphere.  

Stokes’ Law is fulfilled only under some conditions and thus, a subject to some 

limitations. Specifically, this relationship is valid only for laminar flow. 

In the beginning of its motion, the sphere is accelerating and its velocity 

increases. While the velocity increases, the viscosity force also increases until 

the weight G is balanced by the sum of the buoyancy G1 and the viscosity force 
F. Further, the sphere is falling with a uniform speed in the liquid: 

0FGG 1 =++
rrr

 and in scalar form: –G+G1+F=0. 

Then the dynamic viscosity of the liquid is obtained from: 

21 r
v

g)(

9

2 ρ−ρ
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The velocity of the sphere is given by the following relation: 

t

L
v =  

with L – distance at which the uniformly propagating sphere moves for a time t.  

The diameter of the sphere is 2d r= and finally we obtain:  

td
L18

g)( 21ρ−ρ
=η . 

The last expression is strictly fulfilled only for a body propagating in an infinite 

fluid, i.e. when the volume of the fluid is much larger than the particle volume. 

Since the liquid in the vicinity of the cylinder walls is motionless, and the fluid 

layer at the interface of the liquid and the sphere propagates with the same 

velocity as the sphere itself, the velocity gradient increases. As a result the 

velocity v of the sphere in the cylinder becomes smaller compared to that of a 

sphere propagating in an infinite liquid.  

Taking into account the influence of the cylinder walls on the velocity of a 

sphere propagating in a finite liquid, the dynamic viscosity of the liquid is given 

by: 

21 r

R

r
4,21v

g)(

9

2









+

ρ−ρ
=η , 

where R – radius of the cylinder. 

Since the diameters of the used spheres are much smaller than the radius 

of the cylinder, the ratio 01,0
R

r
4,2 ≈  and it may be neglected in the above 

relation (only assuming that the sphere propagates along the cylinder axis). 

 

EXPERIMENTAL SECTION 
The viscosity of a known liquid will be measured 

using a cylinder full of fluid (glycerine) as a viscometer. 

If a small ball is dropped into this liquid it moves with a 

constant velocity which can be measured by a stopwatch. 

The ball is placed in the fluid and the time that it 

takes to fall the length of the cylinder is recorded. This 

time is then utilized to back the viscosity out of the 

velocity relationship that we derived using Stokes’ law 

and summing forces. As the ball is dropped into the fluid 

it accelerates as a result of the gravitational field until the 

                                                        

                                                                     Figure 8. Stokes viscometer 



ball reaches constant velocity. Terminal velocity occurs when the viscous and 

buoyancy forces equal the weight of the ball. At this point the velocity of the 

ball is maximum, or terminal.  

In order to determine the viscosity of a liquid using the Stokes’ method, it is 

required to do the following. 

1. Lead spheres with diameter d are used. The diameter of each sphere is 

measured by a micrometer. (Be careful – lead is a very soft material and 

deforms easily!). 

2. After the sphere diameter is measured, the body is let to fall into the 

glycerine. The motion should be in the direction of the cylinder axis. The time 

t, required for the sphere to cover the distance L is measured by a stopwatch. 

3. Ten measurements for different lead spheres are performed and the 

results are written in the table below. 

 

№ d, mm d, m t, s d
2
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2
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2
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4. The glycerine density ρ1, the density of lead spheres ρ and the 

distance L are given:  

=ρ     =ρ1     =L  

 

5. The dynamic viscosity of glycerine is calculated from: 

td
L18

g)( 21ρ−ρ
=η , where )const(k

L18

g)( 1 =
ρ−ρ

, i. e. tdk 2=η . 

The constant =k  

 

 

 

 

 



 

6. From the obtained values of the dynamic viscosity, the average 

viscosity η  and its error η∆  is calculated. 

)1n(n

n

1i

2
i

−

η∆

±=η∆
∑
= ,       n=10 

=η∆   

 

The correction with the Student coefficient, st for α = 0.95 and n = 10 

has to be done and the final result should be written. 

7. Final result:    )s( s η∆±η=η  

 

 

MEASUREMENT OF THE LIGHT WAVELENGTHS  
OF DIFFERENT COLORS APPARATUS 

 
The light wavelength is measured using diffraction grating, lens and 

screen as shown in the Figure. The lights of different colors are obtained from 

monochromatic light emitting diodes mounted in torches. 

  

 
 

Figure 9. Experimental set-up for measuring the light wavelength. 

 

THEORETICAL SECTION 
The wave nature of light manifests in the phenomena of diffraction and 

interference. They can be explained qualitatively by the Huygens' principle 

which slates that every point on a wave front can be considered as a source of 

tiny wavelets that spread out in the forward direction at the speed of the wave 

itself. The new wave front is the envelope of all the wavelets that is, the tangent 

to all of them. 



A large number of equally spaced parallel slits is called a diffraction 

grating. Gratings can be made by precision machining of very fine parallel lines 

on a glass plate. The untouched spaces between the lines serve as slits. 

Photographic transparencies of an original grating serve as inexpensive 

gratings. Gratings containing 5-10000 lines per centimeter are common, and are 

very useful for precise measurements of wavelengths. A diffraction grating 

containing slits is called a transmission grating. Another type of diffraction 

grating is the reflection grating, made by ruling fine lines on a metallic or 

glass surface from which light is reflected and analyzed.  

The simplest way to measure the wavelength is to use the setup shown in Figure 

9. Diffractive grating is placed between the lens and the screen and the light 

from the source is focused on the screen, where the zero and the first maxima 

are seen. 

 

DERIVATION OF THE FORMULA FOR THE WAVELENTH 
 

The lens L focuses the rays from the source O to the image O`. The 

optical paths of all rays from the source to it’s image are equal, let’s denote this 

path by l . When the grating is between the lens and the screen there will be 

other images on the screen, due to the diffraction from the grating. The position 

in point C of the first maximum (the bright spot at distance x from the zero 

maximum O`) (Figure 10) is a result of the constructive interference – the 

difference of the optical paths from two neighbouring slits of the grating is 

equal to the wavelength λ . It is seen from Figure 10a the optical path of the ray 

through point A is '

1 1l l l− + , and the similar ray through point B is '

2 2l l l− + . 

Their difference is: 

2 12 1( ) ( )l l l l λ− − − =′ ′  

 

  
 

a) The grating between lens and screen. b) The lens grating between and   

screen. 

Figure 10. Formation of images from light source through lens and diffraction 

grating. 

 



Here 1l  and 2l  are the lengths of the segments AO` and BO`, and 1l′  and 

2l′  are AC and BC. If the distance from point A to the optical axis is z, and the 

distance of the grating to the screen is a: 

2 2 2 2

1 2

2 2 2 2

1 2

( )

( ) ( )

l z a l z d a

x z a x z d al l

= + = + +

= − + = − − + ,′ ′

 

d is the constant of the diffraction grating (the segment AB in Figure 10). 

The grating constant d is very small (2.10
-4 

cm) compared to x and a (in 

the order of cm), so we can expand 2l  and 2l′   in Taylor series of d and obtain 

as a first order approximation by d: 

2 1

1
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l l

l
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1

( )x z d
l l

l

−
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′
 

From the condition of the first maximum: 

11

( )zd x z d

l l
λ

−
+ =

′
. 

This equation can be solved, taking into account that the ratio dε λ= /  

may be considered small: 

2 2

dx

a x
λ =

+
 

If the lens is between the grating and the screen as in Figure 10 the same 

formula is obtained, but in this case x is the distance of the virtual image Oi 

from the optical axis, which can not be directly measured.  

 

EXPERIMENTAL SECTION 

ASSIGNMENTS 
 

1. Fix the light torch, lens and the diffractive grating in such positions 

on the optical bench to obtain sharp images on the screen. Use the 

power supply adaptor to feed the torch, and ruler to measure the 

distances.  

2. Measure the distance a between the grating and the screen and the 

distance between the two first order maxima. Fill in the table with 

measured quantities. 

3. Change the distance of the grating to the screen and measure again.  

4. Change the torch and repeat steps 1 to 3 again. 

5. Calculate the wavelength for each measurement. 
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6. Calculate the mean value of the wavelength for each color. 
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5
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7. Calculate the errors and make the correction with the Student 

coefficient, st for α = 0.95: 

5
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λ
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8. Write the final result for each color. 

=λ∆±λ=λ 111  

=λ∆±λ=λ 222  

 

 

MEASURING THE CP/CV  -RATIO OF AIR  
BY CLEMENT-DESORMES METHOD 

 
THEORETICAL SECTION 
Molar heat capacity С is a thermodynamic quantity equal to the amount 

of heat to be transferred to 1 mol of a substance in order to increase its 

temperature with 1К: 
dT

dQ
C = . 

For gaseous substances the molar heat capacity strongly depends on the 

temperature and the conditions under which heat is exchanged. For all gases 

two molar heat capacities are defined: Cp means molar heat capacity at constant 

pressure (isobaric process) and CV is the molar heat capacity at constant volume 



(isochoric process). The ratio 
p

V

C

C
κ = is called an adiabatic coefficient and also 

represents the exponent in the Poisson’s formula pV constκ =  which describes 

the adiabatic process (δQ=0). The value of κ  can be obtained utilizing changes 

in the parameters of a gas contained in a vessel with walls with constant 

temperature and undergoing particular thermodynamic processes (Clement-

Desormes method). 

In case of the isochoric process the transfered amount of heat leads only 

to increase of the gas temperature and no work is done, i.e. only the internal 

energy of the gas is increased. The First law of thermodynamics is: 

dVpdUdAdUQ +=+=δ  and the formula for the internal energy of 1 mol 

ideal gas is: RT
2

i
U = . The molar heat capacity at a constant volume (dV=0) 

for an ideal gas is given by: R
2

i

dT

dU

dT

dQ
Cv === , where i is the number of 

degrees of freedom of a molecule. Degrees of freedom are the minimum 

number of independent coordinates which determine the molecule position in 

space; R – universal gas constant. 

During the isobaric process the transferred heat both increase the 

internal energy of the gas and does a work to change the gas volume. Thus, 

taking into account the First law of thermodynamics and the ideal gas state 

equation RTpV = , the molar heat capacity at constant pressure (p=const) is 

obtained from: 

R
2

2i
RCvRR

2

i

dT

dVp

dT

dU

dT

dQ
Cp

+
=+=+=+== . 

For the adiabatic coefficient we have that 
2p

V

C i

C i
κ

+
= = . 

The adiabatic ratio is characteristic for the gas studied and depends only 

on the number of degrees of freedom of the gas molecules.  

Let gas with volume V1 has pressure p1=p0+h1 (p0 – atmospheric 

pressure) and the temperature is T1, equal to the room temperature (I state). If 

the gas is quickly introduced to a state, corresponding to atmospheric pressure 

p0, it will adiabatically expand to volume V2 and the temperature will be 

decreased to T2< T1 (II state). The vessel with the gas A is big enough, so that 

the volume loss of gas when adiabatically equalizing the pressures may be 



neglected. Thus, we may write: 1 1 0 2p V p V
κ κ= . Applying the ideal gas state 

equation for the states I and II, leads to: 0 21 1

1 2

p Vp V

T T
= .  

Taking into account the last two dependencies, it may be obtained: 
1

1 1

0 2

p T

p T

κ κ−
   

=   
  

. Further, the gas volume is kept constant (V2=const) and since 

the gas is heating up, the temperature is increased to the ambient temperature 

T1, and the pressure increase from p0 to p2=p0+h2 (III state). This isochoric 

transition leads to 

2

1

0

2

T

T

p

p
= . Substituting p1 and p2 we obtain: 
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 and thus, 
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+
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2

1

T

T
 from the 

above equations, we obtain
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. The last relation may be 

re-written as follows: 
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 , where the ratios  
0

1

p

h
 << 1 and 

0

2

p

h
 << 1 are small. If the left and right side of the above equation are expanded 

in series, and only the terms containing the first power of the ratios 
0

1

p

h
 and 

0

2

p

h
 are considered, the final result will be:  

1

1 2

h

h h
κ =

−
 

From this last relation the adiabatic coefficient κ  may be calculated, if 

the differences in the water heights h1 and h2 for the two arms of the U-tube are 

measured.  

 

 

 

 

 

 

 

 



EXPERIMENTAL SECTION 
In order to measure the adiabatic coefficient follows the next steps: 

1. The valve К1 connecting the air in the vessel with the atmospheric air 

is opened. 

2. Valve К2, is turned in such a way that it simultaneously connects the 

pump P with the manometer М and the vessel А. The water level into the two 

arms of the U-shape manometer (U-tube) should be equal in this position of the 

valve. Thus, the hydrostatic pressure of water into the arms of the manometer is 

equal to the atmospheric one. 

3. Valve К1 is closed. 

4. By pumping the pressure in the vessel A is adiabatically increased 

compared to the atmospheric one. The pressure increase for the air in vessel A 

corresponds to a difference between the water heights in the two arms of the U-

shape manometer ~20cm. The valve К2 must be quickly closed – the pump is 

isolated from the system vessel A and manometer.  

5. The pressure in А is slowly decreased until the temperature of the air 

inside the vessel becomes equal to the room temperature. After a few minutes, 

thermodynamic equilibrium is reached and the difference between the heights 

of the two arms of the manometer, h1, can be measured. 

6. The valve К1 is to be quickly rotated at 180о (air whistle should be 

heard). In this way, the air in the vessel A is adiabatically expanded. 

7. Meanwhile, the temperature of the air in vessel A has now become 

lower than the room temperature. The air in A receives some amount of heat 
from the environment to the air in A until its temperature reaches room 

temperature. This results in a raise of the pressure in the vessel A and at the 

same time, a difference h2, in the water height in the two sleeves of the 

manometer, which corresponds to an equilibrium state and the end of the 

process.  

8. Having measured the values of h1 and h2 the ratio of the molar 

capacities κ  is obtained from the relation. Then the average of the all measured 

values is calculated. 

 

К1 – valve 

К2 –valve 

А – shielded glass vessel with air 

М – manometer 

P – pump  

 

 

        Figure 11. Experimental set-up 

 



                               

№ 1h , mm 2h , mm 21 hh − , mm  κ  κ∆  2κ∆  
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5.       
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    κ =  2
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9. From the obtained values of κ  the average κ  is estimated and the 

standard deviation κ∆  is calculated. 

2

1

( 1)

n

i

i

n n

κ

κ =

∆

∆ =
−

∑
,   n=10 

κ∆ = 

10. Correction with the Student coefficient for α=0.95 is done for n= 10. 

11. End result. 

κκκ ∆±= ts  

 
 
 

MEASUREMENT OF THE RESISTANCE AND TEMPERATURE 
COEFFICIENT OF A METAL BY WHEATSTONE BRIDGE 
 

APPARATUS 
The bridge method is widely used in precise 

measurements, even in the tiny solid state sensors. 

The Wheatstone bridge is popular bridge circuit 

used to measure impedances. It is utilized for the 

measurement of unknown electrical resistances by 

balancing two legs of a circuit, as shown in Figure 

12, called bridge, the one leg of which includes the 

unknown component, and the other has known 

variable resistors.                         Figure 12. 



In the circuit, R
x 
is the unknown resistance to be measured; R

1
, R

2 
and R

0 

are resistors of known resistance and the resistance of R
2 

is adjustable. In the 

circuit branch between the points A and C a supply voltage is applied. R
2 

is 

varied until the current through the galvanometer G becomes zero, then the 

voltage between the two midpoints (B and D) will be zero too. It is said that the 

bridge is balanced when this condition is reached. Detecting zero current can be 

done to extremely high accuracy, that is why a galvanometer is used. Therefore, 

if R
1
, R

2 
and R

0 
are known to high precision, then R

x 
can be measured to high 

precision. Very small changes in R
x 
disrupt the balance and are readily detected. 

When the bridge is balanced, the same currents I1 flow trough Rx, R0 

and the current I2 flows trough R1, R2. In this case the voltages on Rx and R1 are 

the same and from the Ohm’s law 1 2 1x
I R I R= , and the same is valid for the 

other two resistance  1 0 2 2I R I R= . Dividing two equations we get: 

1
0

2

x

R
R R

R
=  

In the quantum theory of conductivity, the electrical resistance of metals 

is not due to the collisions of the free electrons with the positively charged ions 

of the lattice but may be explained as the result of the scattering of the free 

electrons on the lattice imperfections/defects and on the lattice heat oscillations 

(the phonons). The result is that in the case of very pure metals the resistance 

will tend to zero when the temperature approaches the absolute zero (though the 

latter phenomenon should not be mistaken with superconductivity!). 

The dependence of the electrical resistance on temperature is linear, i.e. 

of the type: ( )0 1 ttR R α= + , where Rt – resistance at temperature t °C, R0 – 

resistance of copper at 0 °C, α– thermal coefficient of ohmic resistance 

measured in [K
-1

] and is equal to the relative change in the electrical resistance 

when the temperature is changed by 1 K. 

  
MEASUREMENTS 

Measure the temperature dependence of a metal resistor. 

1. As a resistor a copper wire is used, dipped into a test tube glass, 

filled with glycerine or other liquid with low thermal and electrical conductivity 

(transformer oil). The tube is put on water bath and is heated on by a hot plate. 

The copper wire resistance is measured by balancing the Wheatstone bridge at 

different temperatures. The temperature is increased by a step of 5
о
С starting 

from room temperature.  

 

 

 



2. The measurement results should be put in the table below. 

 

№ t, 
o
C R, Ω 

1.   

2   

3   

4   

5   

6   

7   

8   

9   

10   

 =t  =R  

 

3. Draw a graph - on the abscissa put the temperature and on the 

ordinate put the resistance. 

4. Draw a straight line through the experimental points in the graph. 

5. Determine the resistance at 0°C by extrapolating the straight line 

until it intersects the ordinate at t = 0°C and calculate the thermal coefficient of 

resistance for the copper wire. 

The thermal coefficient α is determined by the following relation: 

tR

RR

0

0−
=α                             

 Determine the relative error: 

t

t

R

R

RR

RR

0

0

0

0 ∆
+

∆
+

−

∆+∆
=

α

α∆
 

6. Calculate the absolute error 

α∆  =  

Figure 13. 



7. The final result is:  

α∆±α  

 

MEASUREMENT OF THE ELECTRON SPECIFIC CHARGE  
USING MAGNETRON TUBE 

 

THEORETICAL SECTION 
The specific charge of an electron is the ratio 

of the electron charge and its mass e/m. As magnetron 

may be regarded a vacuum tube (diode) placed inside 

a solenoid which can generate a magnetic field 

B
r

coaxially to the tube (see the experimental section). 

Heating of the diode’s cathode causes thermal 

emission of the electrons from the cathode surface. 

The released electrons move directly to the anode. 

When a current flows trough the solenoid, in the space 

between the cathode and the anode two fields exist: 

magnetic (from the solenoid, axial to the tube) and  

electric (from the diode, radial to the anode and the     Figure 14. Diode lamp 

cathode). We will suppose the magnetic field B
r

 is homogenous and 

perpendicular to the electron velocity, v
r

. In this case the path of the electron is 

a curve with the curvature radius R, reversely proportional to the magnitude of 

magnetic field B
r

 (the larger B, the smaller the electron path radius), see 

“Experimental section” and the graph Ia(Is). If the current in the solenoid 

increases, the magnitude of magnetic field B
r

 increases too. When it reaches a 

certain value Bcr, some electrons cannot reach the anode and this will result in 

an abrupt and well recognized decrease of the anode current.  

In case of a switched off magnetic field, i.e. B
r

 = 0, the electric field 

with potential difference U between the heated cathode and the anode transports 

all electrons to the anode. Electric current, Ia flows to the anode. The work eU 

of the electric field between the cathode and the anode increase the kinetic 

energy of the electron, 
2v

2

m
eU = . Solving this equation for the specific charge, 

we get 
2v

2

e

m U
= . In order to calculate the specific electron charge e/m, it is 

necessary to measure the applied voltage U and to calculate the velocity v. The 

voltage is measured by a voltmeter, while the velocity can be determined if the 

electron motion in the additionally applied homogenous magnetic field of the 



coil in the magnetron is regarded. The homogenous magnetic field is acting 

upon the electron with a Lorentz force, given by:  

( )BveF
rrr

×= . 

For small values of the magnetic induction B
r

 the electron trajectories 

become non-linear, but the electron is still capable of reaching the anode and an 

anodic current is flowing, as shown in the graph below. The anode current Ia 

remains almost constant. If the induction B
r

 increases and reaches some critical 

value, Bcr, the trajectory curvature of some of the electrons will become large 

enough and they will not be able to reach the anode, i.e. the anode current will 

decrease. Taking into account that the Lorentz force is a centripetal force in this 

case, we can find the velocity of the electron at the critical magnetic field Bcr: 

cr

2

evB
r

mv
= , (if Bv

rr
⊥ ). 

Having in mind that at Bcr, the curvature radius is r ≈ ra/2 (ra – radius of 

the anode), it may be written for the specific charge: 
22

8

cra Br

U

m

e
= , where the 

critical magnetic induction of the coil magnetic field is determined by: 

crscr nIB 0µ= , with Iscr being the current which corresponds to the critical value 

of the magnetic induction, Bcr; n – the number of turns per meter length; 

µ0 = 4π.10-7 H/A2
 – magnetic constant (permeability of vacuum). 

The specific charge of the electron can be determined from the 

following expression: 

2222

8

ascr rIn

U

m

e

µ
= , 

 assuming, it is fulfilled, that the cathode radius is rc<<ra. 



 

Figure 15. Graphic of the dependence Ia(Is) 

If all electrons emitted from the hot cathode have the same velocities, 

then the critical induction value, Bcr will be the same for all of them and the 

anode current, Ia will abruptly become zero (at once) when critical magnetic 

field is applied. However, the electrons are Maxwell distributed with velocities 

in different directions when being emitted from the heated cathode. Thus, Bcr is 

not the same for all electrons and the critical field is reached for the different 

electrons at different values of the solenoid current Is. As a result, the anode 

current will not become abruptly zero, but will gradually decrease. Actually, the 

anode current will never become equal to 0, because the upper part of the diode 

is closed and few electrons, having velocities parallel to the magnetic induction, 

will always reach the anode. Further, the anode and the cathode can never be 

perfectly coaxial and thus, the induction vector will always be not perfectly 

parallel to the cathode. 

 
EXPERIMENTAL SECTION 
І. Schematic view of the measurement set-up. 

ε1 and ε 2 – sources of a dc-current 

Аa – ammeter for the estimation of the anode current Ia 

Аs – ammeter for the measurement of the coil current Is  

V – voltmeter 

К – cathode 

А – anode 

R1 and R2 – rheostats 

 

Figure 16. Experimental set-up 



IІ. Measurement of the specific electron charge e/m by using magnetron. 

1. The constants of the two ammeters and the voltmeter must be written. 

=VK  

=AaK  

=AsK  

2. The cathode heating is switched on and after the cathode is heated up, 

different values of the voltage anode-cathode are applied (the voltage U should 

not exceed 90V to avoid damaging of the diode). 

3. The current through the solenoid Is is changed with an increment of 5 

scale divisions and the corresponding values of the anode current Ia are written. 

 4. All  measurements are written down in the table. 

 

  U= .....V U= .....V 

№ Is, Ia, Ia, 

 Scale 

divisions 

А Scale 

divisions 

А Scale 

divisions 

А 

1.       

2       

3       

4       

5       

6       

7       

8       

9       

10       

 

5. The graphic Ia vs. Is, Ia=f(Is) is drawn. 

 

 

 

 

 

     

            Figure 17. Estimation of Iscr 

 



6. From the middle point of the abrupt part of the obtained curve the 

critical solenoid current Iscr is determined and the critical field Bcr is calculated. 

7. The specific charge e/m is calculated from the expression: 

2
a

2
рsк

22
0 rIn

U8

m

e

µ
= , 

=
m

e
 

where U is the applied between the anode and cathode voltage; 

n – number of solenoid turns per meter 

n= 

ra – anode radius (the measurement accuracy is much higher than that 

for the estimation of the current and the voltage and the instrument error for ra 

is further neglected) 

ra= 

8. The relative error for the specific charge is estimated by: 








 ∆
+

∆
±=





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
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I

I

U

U

m

e

m

e

2ε ,  =









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m

e
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where ∆U и ∆Iscr are the instrument errors of the voltmere and ammeter. 

 

=∆U    , =∆ scrI  

 

10. The total error of measurement is obtained from the relation: 

m

e
.

m

e
ε=








∆ ,  =








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11. The end result is: 


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




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REFRACTION OF LIGHT. REFRACTIVE INDEX.  
DISPERSION. ABBE’S REFRACTOMETER 

 

THEORETICAL SECTION 
When light waves travel through a transparent medium (optical 

medium), its electric part interacts with the electrons of that medium, causing 

them to vibrate. The electrons of the medium thus become radiating light waves 

as the secondary sources. However, the speed of new waves, v, changes accor-

dingly to the optical properties of the particular medium. It is always smaller 

than the speed of light in vacuum, v<c. All materials are characterized by their 

ability to slow down the light waves, known as optical refractive index n: 

c

v
n =  

The refractive index is a dimensionless parameter, equal to 1 for a 

vacuum and larger than 1 for any other material (e.g. n=1.33 for water). The 

speed of light in air is only slightly less than c, resulting into the refractive 

index of 1.0003. 

The difference between a light 

speed in different media results into the 

change of direction along which the 

light propagates, refraction. Refraction 

occurs when the light passes from one 

medium to a medium with a different 

index of refraction, except the light that 

approaches the boundary between the 

two media perpendicularly. Depending 

on the properties of an optical medium, 

some portion of light, approaching the 

interface at an incident angle 

α, isreflected back to the first medium while Figure 18. Snell’s law 

the rest propagates into the other medium at an angle of refraction β. The angles 

of incidence, reflection and refraction are defined as angles between the 

particular ray and the interface normal. The refractive angle is determined by 

the Snell's law: 

β=α sinnsinn 21 , 

where n1 is the refractive index of medium 1 and n2 is the refractive index of 

medium 2. It is possible to define an optical density for the media of different 

refractive indices. Medium A has a higher optical density than medium B, if its 

refractive index is higher than that of medium B. According to the Snell's law, 

the light ray is "bending towards the normal" (β<α), if it enters the medium 



with a higher optical density (Figure 18). When it enters the medium with a 

lower optical density, it is "bending away from the normal" (β>α). 

Refractive indices can be measured by refractometers. We will use the 

double prism system called the Abbe's refractometer. It consists of the two 

optical prisms (illuminating and refracting) with the thin layer of a liquid 

sample between them. The measuring prism is made of a glass with a high 

refractive index (n2>1,75), which allows this refractometer to measure 

refractive indices up to n1<1.75. The light enters the refractometer from the 

bottom side of the illuminating prism at many different angles. The upper part 

of this prism is rough, i.e. it consists of many small areas oriented in different 

directions. As such, this surface can be imagined as a source shining the light 

into all directions. Part of this light passes through the sample into the refracting 

prism, where the biggest possible angle of incident, α is nearly 90
o
.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. The schematic of Abbe's refractometer 

 

According to the Snell's law, the refraction of this ray is then described 

by the maximum angle of refraction βmax. All rays refracted by the second 

prism are collected by the objective lens and are looked trough an ocular-lens. 

The field of vision is a circle, divided to a dark and a bright region. The position 

of the border between them corresponds to the maximum angle of refraction 

from Snell’s law: 

maxsin

sin 90

liquid

o

prism

n

n

β
=  

and depends on the refractive index of the liquid between the two prisms. The 

angle of the body tube can be adjusted to match a cross with the border. In this 



case the angle of the body tube corresponds to βmax and the refractive index can 

be read from the scale of refractometer. 

The refraction index depends on the wavelength of light, because the 

speed of light waves depends on their wavelength. Light of different colours 

(different wavelengths) is bending at different angles even if it comes at the 

same angle of incidence (dispersion). As a result, the white light, that comprises 

all the wavelengths, produces a rainbow after passing through the optical prism 

(or droplets of moisture in the atmosphere). However, despite the beauty of a 

rainbow, this is an unwanted effect in refractive index determination. It causes 

the smearing of an interface between the illuminated and dark regions in the 

Abbe's refractometer. To increase the precision of a measurement, it is therefore 

preferable to use monochromatic light (light of a single wavelength). The most 

commonly used source is light from a sodium lamp with wavelength equal to 

589 nm. The refractive index depends also on the density of the measured 

sample, which is affected by its temperature. Typically, the refractive index 

decreases with the decreasing density (increasing temperature). The 

measurement of a refractive index is therefore reported together with the 

temperature and the wavelength of light used. The symbol nD then represents 

the refractive index measured at t=20 °C using the sodium line D light (low 

pressure sodium lamp). 

The refractive index is an important physical parameter, which is widely 

used in chemistry. It is commonly used to identify the liquid, or its purity. 

Often, it is used to determine the concentration of solutions. 

 

EXPERIMENTAL SECTION 
I. The determination of the refractive index of glycerine-water 

solutions 
The task consists of the determination of the refractive index of distilled 

water and different solutions of glycerine and water. The measurement results 

into calibration curve (refractive index as a function of C% glycerine). This 

curve will be then used to determine the composition of an unknown mixture of 

water and glycerine. 

Equipment: Abbe's refractometer, pipette, thermometer, different 

mixtures of glycerine and distilled water at known compositions, mixture of 

glycerine and distilled water at an unknown composition, filter paper. 

 

II. Experimental procedure: 
1. Turn on the light source. 

2. Open the double-prism of the refractometer, clean both glass surfaces 

with a filter paper, and close the double-prism. Use a pipette to fill the space 

between the two prisms with the distilled water. Turn the refractometer scale 

knob to get a clear interface between the illuminated and dark regions. Use the 



micrometric screw for the additional refinement of the scale, until the clear 

interface appears. Read out the refractive index from the scale. 

3. Open the double-prism and dry out glass surfaces using the filter 

paper. Repeat the measurement for all glycerine/water mixtures of known and 

unknown compositions. Fill in the measurement data in the table below: 

 

№ C, % n 

1.   

2   

3   

4   

5   

6   

 

4. Prepare a calibration curve (i.e. dependence n=f(C% glycerine)). Fit 

the experimental points with a straight line. 

5. Determine the composition of the unknown solution using its 

refractive index and the calibration curve. 

 

 

UNIFORMLY ACCELERATED MOTION –  
COMPUTER ASSISTED MEASUREMENT 

 

APPARATUS 
The equipment consists of an 

Atwood machine connected to a computer 

and set of weights. The aim of the 

experiment is to measure the acceleration 

of masses and compared the results to the 

prediction of Newton’s law.   

 
ATWOOD MACHINE 
The Atwood machine is a device 

which was invented by George Atwood to 

verify the mechanical laws of motion. The 

setup is shown in Figure 20. 

Two holders are suspended from 

both ends of a string wrapped around the 

pulley. They can be loaded by different 

weights. A large disk is fixed to the 

pulley. The gears of the disk cross the 

infrared light of two photogates (as 

 
Figure 20. Setup for measuring  

acceleration (Atwood machine).   

 



photogates opto-isolators are used). Their signals are shifted in time, which 

helps to find the direction of rotation.  

The right load can be lifted up by a dc motor. The load is fixed in an 

upper position by an electro-magnet. The motor and the magnet are switched 

on/off by a computer. The signals from the photogates have a square wave 

forms, they are send to the Line input of the computer sound card. The front of 

each pulse is used to trigger the signal which counts the turn of one gear (the 

triggers are shown as circles in Figure 22). A program written in Delphi is used 

to read the signals and to show them on the computer screen (see Figure 22 – 

the signals are in red and blue). The parallel port of the computer is used to 

control the Atwood machine. A signal from a switch is obtained when the load 

is in upper position. 

   

 
EQUATIONS OF MOTION FOR THE ATWOOD MACHINE 
In order to calculate the acceleration we must take into account the friction of 

the pulley and the moment of inertia I of all rotating parts. We will suppose an 

inextensible string which leads equality of the acceleration of the two weights. 

We suppose the friction force is proportional to the force on the pulley axis and 

denote the friction coefficient by k. 

The equations of motion for the two loads are: 

1 1 1m a m g T− = −  

2 2 2m a m g T= −                                     (1) 

The forces acting on each body are shown in 

Figure 21. The equation of rotation is :  

2 1 трI T r T r Fα ρ= − −  

The linear and the angular velocities are 

connected by v rα= , and  :  

2 1 трa T T fµ = − − ,  

where 2I rµ = /  is called reduced mass. The 

force of friction is proportional to the load on 

the pulley’s axis 1 2T T+  :  

2 1 1 2( )a T T k T Tµ = − − +                    (2) 

Solving these equations one obtains for the 

acceleration : 

2 1 2 1

2 1 2 1

( )

( )

m m k m m
a g

m m k m m µ

− − +
=

+ − − +
                       (3) 

 

 

 

 
Figure 21. Forces on the loads. 



Let’s denote 2 1m m m∆ = − , 1 22m m m m+ ∆ = + , then the acceleration is :  

(1 ) 2

2 (1 )

m k km
a g

m m k µ

∆ − −
=

+ ∆ − +
  (4) 

 

Let expand (4) to first order over m∆  :  

2

2 2

g gkm
a m

m mµ µ
= ∆ − ,

+ +
  (5) 

 

i.e. for small m∆ and small friction k  we have a linear dependence on the mass 

difference 1 2a k m k= ∆ + , and measuring the two coefficients k1 and k2 we can 

find the friction coefficient and reduced mass :  

1

2
g

m
k

µ = −  ,  2

12

k
k

mk
= −   

 
EXPERIMENTAL PROCEDURE 
1. Put a load on the right holder.  

2. Start the program from  icon and after that switch on the 

Atwood machine power supply.  

3. Press the program’s button with red caption Start. Wait until the load 

sticks at the upper position and the motor stops. The button caption becomes 

Start. If the load does not stick press the same button until its caption becomes 

‘Start’ and try again. 

4. The collected data can be transferred into Excel table choosing the 

button Excel. If you want to keep the measurements, save the data as Excel file 

before exiting the program. With the two buttons Stop and Clear you can stop 

the data acquisition and clear the graph. 

 
Figure 22. Program screen. 



ASSIGNMENTS 
1. Find the acceleration at different loads. One count on the graph (one 

tick) is equal to a displacement of the load by 0.51 mm. 

2. Draw how the velocity depends on time. 

3. Draw the dependence of the acceleration on the load. Find the 

parameters µ  and k . Compare obtained curve with predicted from (4) and (5). 

4. Calculate the maximum speed at different loads using collected data. 

5. Calculate the strain of the wire using the maximum speed. Calculate 

the wire stress, supposing the Young’s modulus is 10
10

 Pa. 

6. Calculate the reduced mass. Use the data from the table about the 

rotating parts of the Atwood machine. 

 

Pulley Disk Gears Motor guide 

circle 

density 2.7 g/cm
3
  

radius 1.5 cm 

length 3.5 cm 
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2
I mr=  

density 2.7 g/cm
3
  

radius 11.15 cm 

thickness 0.185 
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3
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I mr=  

density 0.8 g/cm
3
  

radius 9.45 cm 

thickness 0.8 cm 

width 0.65 cm 
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I mr=  

 

 
DENSITY MEASUREMENTS BY PYCNOMETER 

 

THEORETICAL SECTION 
Density 
The density ρ, is elementary physical property of matter. For a 

homogeneous object it is defined as the ratio of its mass m to its volume V:  

V

m
=ρ   [1] 

Numerically it represents the mass per unit volume of matter. As it 

follows from the definition, the SI unit of density is kg/m
3
. However, g/cm

3
 is 

another unit commonly used in the laboratories.  The volume of an object 

increases with increasing temperature, because of the matter’s volumetric 

thermal expansion. Therefore, according to equation [1], the density of an 

object depends on its temperature, with higher temperature resulting in lower 

density. Exception is water in temperature range 0-4 °C, for which the density 

increases with increasing temperature. The density of a gas further depends on 

the pressure as well. Nevertheless, this effect is negligible in a case of liquid 

and/or solid matter. There are several experimental methods used for density 

determination of liquids. We will determine densities by using pycnometer in 

this assignment. 



Density measurements of liquids by pycnometer 
Density determination by pycnometer is a very 

precise method. It uses a working liquid with well-

known density, such as water. We will use distilled 

water, for which temperature dependent values of 

density ρH2O are shown in Table 5, Appendix. The 

pycnometer (see experimental set-up) is a glass flask 

with a close-fitting ground glass stopper with a capillary 

hole through it. This fine hole releases a spare liquid 

after closing a top-filled pycnometer and allows for 

obtaining a given volume of measured and/or working 

liquid with a high accuracy.   

First we fill the pycnometer with distilled water. 

According to equation [1], the volume of water that is 

filling the pycnometer and the stopper is:           Figure 23.Pycnometer 

O2H

O2Hm
V

ρ
=  [2] 

where mH2O is experimentally determined weight of water (empty pycnometer 

weight subtracted). 

We repeat the procedure for the liquid with unknown density ρL and 

determine its weight mL (measured weight minus weight of empty pycnometer). 

The volume V obtained in this measurement is the same as the volume of water 

determined from equation [2]. It follows alternated equation 

L

Lm
V

ρ
=  [3] 

Combining equations [2] and [3] 

L

L

O2H

O2H mm

ρ
=

ρ
 [4] 

yields a relation that provides the density of measured liquid 

L
O2H

O2H
L m

m

ρ
=ρ  [5] 

 

Density measurements of solid matter by pycnometer 
Pycnometer can be also used to determine the density of homogeneous 

solid object that does not dissolve in working liquid (water). First, we need to 

measure the weight of pycnometer together with inserted object m0+mS. We add 

water and determine the weight m′Η2Ο (measured weight minus m0+mS). The 

volume of added water V ‘H2O can be obtained as  



O2H

O2H'
O2H

'm
V

ρ
=         [6] 

The volume of measured solid object VS is the difference between the 

volume of water that fills the empty pycnometer V and volume V’H2O 

O2H

'
O2HO2H'

O2H
mm

VVVs
ρ

−
=−=       [7] 

Density of measured object ρS can be then calculated as 

O2H
123

s

s

s
s

mmm

m

V

m
ρ

+−
==ρ       [8] 

where m3 – weight of the pycnometer filled only with water 

 
EXPERIMENTAL SECTION 

Accuracy of herein described method for density determination of liquid 

and/or solid matter relies on precise measurements of weight and volume. Since 

it is important to determine weight of empty pycnometer in its dry state, we do 

so at the beginning. 

1. Determine the weight of the solid objects ms. 

2. Fill in the pycnometer with some objects made of examined material 

(glass beads or small metal pieces as directed) and measure the weight m1. 

3. Add water in such a way that both the pycnometer and the capillary 

hole in the stopper are filled with water. Dry the spare water that leaks through 

the capillary hole with a filter paper and measure total weight m2. 

4. Empty pycnometer and fill it with distilled water only. Use the filter 

paper to dry the spare water again and measure the weight m3. 

5. Empty pycnometer. Rinse it once with a liquid whose density you are 

going to determine next. Fill pycnometer with the liquid as previously and 

measure the weight m4. 

6. Repeat point 5 for several different liquid materials. 

7. Clean pycnometer carefully after finishing the experiment. Rinse it 

with distilled water and let it dry. 

8. Measure the laboratory temperature t, which determines the 

temperature of examined liquids and solid objects. 

9. Calculate the weight of water mH2O=m3-m0, weight of measured 

liquid mL=m4-m0 and determine its density according to equation [5]. Repeat 

this calculation for all of the measured liquids. 

10. In next, calculate the weight of solid object mS=m1-m0 and weight of 

“added” water 

12
'

O2H mmm −=   

11. Calculate object’s volume VS following the equation [7] and its density 

ρS according to equation [8]. 



12. The measurement relative error is obtained from  

123ss

s

mmm

m3

m

m

+−

∆
+

∆
=

ρ

ρ∆
=ε  

13. The total error for the density of the solid is determined from: 

ss ρ•ε=ρ∆  

14. End result: 

=ρ∆±ρ ss  

 
Table 1. The weight of empty pycnometer m0, pycnometer with solid 

objects m1 and pycnometer with solid objects and added water m2. 

m0 [g] 

 

 

m1 [g]  

m2 [g]  

 
Table 2. The weight of pycnometer filled with water, m3 and that of water 

only, mH2O 

m3 

[g] 

mH2O  

[g] 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDICES 
 

1. Physical constants 
Speed of light in vacuum c=3.10

8
m/s 

Acceleration of gravity g=9,80665m/s
2
 

Avogadro number NA=6,022.10
23

mol
-1

 

Gas constant R=8,314J/(mol.K) 

Absolute zero C273K0 °−=  

Faradey constant F=NAe=9,648.10
4
C/mol 

Electron charge е=1,6.10
-19

C 

Boltzmann constant k=1,38.10
-23

J/K 

Standard pressure p0=101325Pa 

Electron mass me=9,1.10
-31

kg 

Proton mass mp=1,672.10
-27

kg 

Neutron mass mn=1,675.10
-27

kg 

Electron specific charge e/me=1,758.10
11

C/kg 

Electric constant ε0=8,85.10
-12

F/m 

Magnetic constant µ0=4π.10
-7

H/m 

Plank constant  h=6,6262.10
-34

J.s 

Rydberg constant R=1,097.10
7
m

-1
 

Stefan-Boltzmann constant σ=5,6703.10
-8

W/(m
2
K

4
) 

Wien constant b=2,8978.10
-3

m.K 

Bohr magneton µB=9,2741.10
-24

A.m
2
 

Nuclear magneton µN=5,0508.10
-27

Am
2
 

Gravitational constant γ=6,672.10
-11

N.m
2
/kg

2
 

 

2.Curie-points of some ferroelectric and ferromagnetic materials. 
 

Material Curie-point, °C 
Ferroelectric materials  

Barium Titanate BaTiO3 120 

Rochelle salt high: 24; low: - 18  

Triglycine sulfate 49 

Lead-Zirconium-Titanate (PZT) 230-500 

Bi4Ti3O12 675 

 

Ferromagnetic materials  

Iron 770 



Cobalt 1130 

Nickel 358 

Permalloy 22%Fe, 78%Ni 550 

Magnetite Fe3O4 570 

 

3. Densities of some solids 

Substance 
3

3

m

kg
10,ρ  

Substance 
3

3

m

kg
10,ρ  

Substance 
3

3

m

kg
10,ρ  

Gypsum 2.25-2.87 Iron 7.85 Cork 0.24 

Diamond 3.4-3.6 Gold 19.3 Sugar 1.59 

Aluminium 

Bronze 

7.7 Potassium 0.86 Lead 11.23-11.44 

Aluminium 

Bronze - 

rolled 

 

2.62-2.8 

Quartz 2.65 Sulfur - 

rhombic 

2.07 

Aluminium 

Bronze – 

chemically 

pure 

 

 

2.58 

Constantan 8.8 Sulfur - 

monoclinic 

1.96 

Asbestos 1.2-2.8 Ebonite 1.8 Silver 10.41-10.57 

Babbitt /Zn-

Sb-Cu-

Alloy/ 

7.1 Brass 8.3-8.7 Mica 2.6-3.2 

Boron 2.4 Ice 0.83-0.92 Salt 2.8-2.2 

Bromine 3.12 Magnesium 1.74 Rock salt 2.28-2.41 

Bronze 8.7 Copper 8.6-8.96 Steel 7.7-8.0 

Beech - dry 0.62-0.83 Marble 2.52-2.84 Crown glass 2.4-2.6 

Paper 0.70-1.15 Sodium 0.97 Flint glass 3.0-5.9 

Bismuth 9.76-9.93 Salmiac 1.52 Antimony 6.6 

Tunsten 1.91 Nickel 8.4-9.2 White 

phosphorous 

1.8 

Wax 0.95-0.99 Tin 7.23-7.5 Zinc 6.86-7.24 

Gypsum 2.17-2.31 Paraffin 0.87-0.93 Cast iron 6.6-7.8 



crystalline 

Gypsum 

liquid 

1.8 Platinum 21.2-21.7   

 

4. Gas constants 

 

s.Pa10

,

5−

η
 

m.K

W
10

,K

2−
 

 

  Substance 

(* data at 293 K) 

 

Molar mass, 

mol/kg10 3−  

 

3m/kg

,ρ

 

 

Cv/Cp  

0 °C 20 °C 0 °C 20 °C 

Nitrogen 28.016 1.251 1.74 1.67 1.74 2.43 3.15 

Ammonia vapour - 0.771 1.34 0.93 0.97 2.18 2.97 

Water vapour 18.016 0.786 1.324 1.28 1.28 2.35 2.38 

Hydrogen 2.016 0.0899 1.41 0.84 0.88 16.84 21.60 

Carbon monoxide 28.01 1.25 1.40 1.67 1.77 2.16 2.75 

Carbon dioxide 44.01 1.977 1.30 1.40 1.45 1.37 1.62 

Air – dry 28.96 1.293 1.40 1.72 1.81 2.41 2.57 

Oxygen 32.00 1.429 1.385 1.92 2.00 2.44 2.62 

Chlorine 70.914 3.22 1.36 1.29 1.32 0.72 - 

Helium 4.002 0.1785 1.66 1.89 1.94 14.51 16.70 

 

 

5. Water density at different temperatures. 

t, 

°C 
3m/kg

,ρ
 

t, 

°C 
3m/kg

,ρ
 

t, 

°C 
3m/kg

,ρ
 

0 999.87 12 999.52 24 997.32 

1 999.93 13 999.40 25 997.07 

2 999.95 14 999.27 26 996.81 

3 999.99 15 999.13 27 996.54 

4 1000 16 998.97 28 996.26 



5 999.99 17 998.80 29 995.97 

6 999.97 18 998.62 30 995.67 

7 999.93 19 998.43 31 995.37 

8 999.88 20 998.23 32 995.05 

9 999.81 21 998.02 33 994.72 

10 999.73 22 997.80 34 994.40 

11 999.63 23 997.57 35 994.06 

 

6.  Resistivity and thermal coefficient of resistance of some metals. 

ρ  α  ρ  α  Metals and 

alloys m.10 6 Ω−  13 K10 −−  

Metals and 

alloys m.10 6 Ω−  13 K10 −−  

Silver 0.015 4.1 Cobalt 0.056 6.5 

Copper 0.0155 4.3 Cadmium 0.073 4.2 

Gold 0.0204 4.0 Iron 0.10 5.6 

Aluminium 0.024 4.7 Osmium 0.096 4.0 

Magnesium I 0.046 - Palladium 0.109 3.6 

Magnesium II 0.038 4.1 Platinum 0.098 6.92 

Radium 0.037 4.4 Tin 0.100 4.6 

Iridium 0.0458 4.1 Tantalum 0.120 3.5 

Tungsten 0.0491 4.8 Bismuth 0.120 4.4 

Molybdenum 0.054 4.7 Lead 0.188 4.0 

Zinc 0.048 4.2 Mercury 0.958 0.99 

Nickel 0.0605 6.7 Hard steel 0.45 1.5 

Brass 0.08 0.05 Iron-Alloys 0.50 0.9 

 

 

 

 



7. Deformation moduli 

Material Young’s Modulus E, 

GPa 

Shear Modulus G, 

GPa 

Aluminium 70 26 

Tungsten 380 140 

Iron (Steel) 200 81 

Copper 130 40 

Lead 16 6 

Silver 74 27 

Glass 60 30 

 

 

 

 

8. Sound velocity in solids at 20 °C (in m/s). 

Material In bar Longitudinal 

Wave 

Transversal 

Wave 

Aluminium 5080 6260 3080 

Iron 5170 5850 3230 

Gold 2030 3240 1200 

Copper 3710 4700 2260 

Brass 3490 4430 2123 

Nickel 4785 5630 2960 

Lead 1200 2160 700 

Silver 2640 3600 1590 

Steel 5050 6100 - 

Zinc 3810 4170 2410 

 



9. Mean radius of atoms and molecules. 

Name (Symbol) Mean Radius, 

10-10m 

Nitrogen (N2) 3.7 

Argon (Ar) 3.5 

Hydrogen (H2) 2.7 

Oxygen (O2) 3.5 

Helium (He) 2.0 

 

10.  Specific heat capacity. 

Gas Cp/Cv 

K.kg

kJ

,cV

 

Nitrogen (N2) 1.40 0.74 

Argon (Ar) 1.67 0.32 

Water vapour (H2O) 1.82 1.38 

Hydrogen (H2) 1.41 10.1 

Air 1.40 0.73 

Carbon dioxide (CO2) 1.30 0.65 

Oxygen(O2) 1.40 0.65 

Helium (He) 1.63 3.14 

Liquids 

K.kg

kJ

,cV

 

Benzol 1.72 

Water 4.19 

Glycerine 2.43 

Mercury 0.138 



Ethanol 2.51 

Solids 

K.kg

J

,cV

 

Aluminium 896 

Tin 230 

Ice 2100 

Copper 386 

Iron 500 

Brass 386 

Lead 126 

Silver 234 

Steel 460 

Zinc 391 

 

11.  Relative dielectric constants. 

Dielectric Relative dielectric constant εr  

Water 81 

Air 1.0058 

Natural gas 2.0 

Ebonite 2.7 

Paraffin 2.0 

Plexiglass 3.5 

Polyethylene 2.3 

Porcelain 6.0 

Mica 7.5 

Ethanol 26 

Glass 6.0 



 

 

12.  Resistivity ρ and thermal coefficient of the resistance α. 

Conductor 

m

Cat

.10

)20(

9 Ω

°
−

ρ
 13 K10 −−

α
 

Aluminium 25 4.5 

Tungsten 50 4.8 

Graphite 3.9.10
3
 -0.8 

Iron 90 6.5 

Constantan 4.8.10
2
 0.02 

Copper 17 4.3 

Nichrome 10
3
 0.26 

Silver 15 4.1 

 

 

 

 

13. Relative magnetic permeability of para- und diamagnetic materials. 

Paramagnetic 
610

,1

−

−µ
 

Diamagnetic 
610

,1

−

−µ
 

Nitrogen 0.013 Hydrogen -0.063 

Air 0.38 Benzol -7.5 

Oxygen 1.9 Water -9.0 

Aluminium 23 Copper -10.3 

Tungsten 176 Rock Salt -12.6 

Platinum 360 Quartz -15.1 

Liquid Oxygen 3400 Bismuth -176 

 



 

14.  Refraction index n (mean values for the visible range of the 

electromagnetic spectrum). 

Material/Substance Index of Refraction n 

Water 1.33 

Air 1.00029 

Diamond 2.42 

Ice 1.31 

Carbon Disulfide 1.63 

Glass 1.5-1.9 

 

 

 

15. Ionisation potential iϕ  of atoms and molecules. 

Atom V,iϕ  

Hydrogen, H 13.5 

Helium, He 24.5 

Lithium, Li 5.4 

Beryllium, Be 9.3 

Boron, B 8.3 

Carbon, C 11.3 

Nitrogen, N 14.5 

Oxygen, O 13.6 

Fluorine, F 17.4 

Neon, Ne 21.5 

Sodium, Na 5.1 

Mercury, Hg 10.4 

 



16. Metals – characteristic quantities. 

Crystalline lattice Metal Work 

function 

A, 

eV 

Fermi-

Energy 

WF, 

 eV 

Elementary 

cell 

Lattice 

constant a, Å 

Debye-

temperature 

Dθ , 

K 

Melting 

point tm, °C 

Aluminium 4.25 11.8 Cubic face-

centered 

4.04 374 658.7 

Barium 2.49 - Cubic body-

centered 
5.02 116 704 

Beryllium 3.92 - - - 1000 1278 

Lead 4.0 - Cubic face-

centered 
4.94 89 327.5 

Cesium 1.81 1.53 Cubic body-

centered 
6.10 60 28.5 

Iron 4.31 - Cubic body-

centered 
2.86 467 1535 

Gold 4.30 5.54 Cubic face-

centered 
4.07 180 1063 

Potassium 2.22 2.14 Cubic body-

centered 
5.31 132 62.3 

Cobalt 4.41 - - - - 1480 

Copper 4.40 7.04 Cubic face-

centered 
3.61 320 1033 

Lithium 2.38 4.72 Cubic face-

centered 
3.50 404 186 

Magnesium 3.64 - - - - 650 

Molybdenum 1.3 - Cubic body-

centered 
3.14 357 2620 

Sodium 2.35 3.12 Cubic body-

centered 
4.28 226 97.5 

Nickel 4.50 - Cubic face-

centered 
3.52 425 1452 

Platinum 5.32 - Cubic face-

centered 
3.92 212 1775 

Silver 4.3 5.51 Cubic face-

centered 
4.08 210 960 

Titanium 3.95 - - - - 1720 

Bismuth 4.42 - - - - 271 



Tungsten 4.54 - Cubic body-

centered 
3.16 310 3370 

Zinc 4.24 11.0 - - 250 419.4 

Tin 4.38 - - - - 231.9 

 

 

 

17.  Relative atomic masses of some isotopes. 

Atomic 

number Z 

Isotope Mass Atomic 

number Z 

Isotope Mass 

0 n 1.00867 6 C
11

 11.01143 

1 H
1
 1.00783  C

12
 12.00000 

 H
2
 2.01410  C

13
 13.00335 

 H
3
 3.01605 7 N

13
 13.00574 

2 He
3
 4.01603  N

14
 14.00307 

 He
4
 4.00260  N

15
 15.00011 

3 Li
6
 6.01513 8 O

15
 15.00307 

 Li
7
 7.01601  O

16
 15.99491 

4 Be
7
 7.01693  O

17
 16.99913 

 Be
8
 8.00531 9 F

19
 18.99840 

 Be
9
 9.01219 10 Ne

20
 19.99244 

 Be
10

 10.01354 11 Na
23

 22.98977 

5 B
10

 10.01294  Na
24

 23.99097 

 B
11

 11.0930 12 Mg
24

 23.98504 

 

 

 

 

 



18. Half-value period of some isotopes. 

Atomic number 

Z 

Isotope Type of Decay Half-value 

Period 

12 Magnesium Mg
21

 −β  
10 min = 600 s 

12 Phosphorus P
32

 −β  
14.3 days = 1.24.10

6 
s 

27 Cobalt Co
60

 γβ− ,  
5.3 years = 1.7.10

8 
s 

38 Strontium Sr
90

 −β  
28 years = 8.85.10

8
 s 

53 Iodine I
131

 γβ− ,  
8 days = 6.9.10

5 
s 

77 Iridium Ir
142

 γβ− ,  
75 days = 6.5.10

6 
s 

84 Polonium Po
210

 α  138 days = 1.98.10
7 
s 

86 Radon Rn
222

 α  3.8 days = 3.28.10
5 
s 

88 Radium Ra
226

 γα,  1620 years = 

5.12.10
10

s 

89 Actinium Ac
225

 α  10 days = 8.64.10
5 
s 

90 Thorium Th
229

 γα,  7.10
3
 years = 2.2.10

11 

s 

92 Uranium U
238

 γα,  4.5.10
9
 years= 

1.4.10
17

s 

 

 
 
 
 
 
 
 
 
 
 
 
 



 
LITERATURE 
 

1. V. Zayachki, P. Devenski, C. Kanazirski, Physics, Martilen Publishing 

Company, Sofia, 2008 (in Bulgarian). 

2. I. Saveliev, General physics course, Nauka Publishing Company, 

Moscow, 1978 (in Russian). 

3. D. Giancoli, Physics, Mir Publishing Company, Moscow, 1989. 

4. R. Feynman, R. Leighton, M. Sands, The Feynman lectures on physics, 

Vol. 1-2, Addison-Wesley Publishing Company – Reading,  

Massachusetts, Palo Alto, London, 1963. 


